

Geophysical Investigations of an in situ Roman Mosaic floor in Volubilis, Morocco

A. DEKAYIR^{1*}, N. BOUZOUBAA¹, M. ROUAI¹, A. LACHHAB², M. ATKI³, M. ALILOU³, BAKADI¹, E.M. BENYASSINE¹

- ¹ UR Géoexplorations et Géotechniques, Département de Géologie, BP. 11201, Zitoun, Meknes Maroc
- ² Earth and Environmental Sciences, Susquahanna University, USA
- ³ Ministère de la Culture et de la Communication, Conservation du site archéologique de Volubilis Maroc

OBJECTIVES

Volubilis located at the NE of Meknes, Morocco is an archaeological Roman site with many home, public baths, religious and official buildings decorated with remarkable mosaic floors. These floors have suffered from negligence and a lack of restoration. In order to mitigate these problem, there is a need of exploration of the best approach. The goal of this study is to implement electrical resistivity and ultrasonic technics to identify fractures and void space, which are the main cause of deterioration.

An example of Mosaic: Venus

The geophysical Survey

resistive (due to the

presence of hallow

spaces, existence of

joints and fractures)

and therefor have

low ultrasonic

properties and

velocities

characterized by

strong ultrasound

velocity values.

The less resistive

Areas highly

Structure of Roman Mosaic (image from Getty)

RESULTS

Model: Size and characteristics Equipment setup

Electrical resistivity

lesselatum

Nucléus

Rudus

Statumen

Bedding layer

Ultrasonic velocity

85 cm Case Study: Ephebe in-situ floor Mosaic

730 cm

The Mosaic floor found at the house of Ephebe which was placed over a concrete platform was found to witness significant degradation of tessellatum mainly due to the oxidation of steel rebars

Ultrasonic velocity

This Mosaic showed a substantial alteration especially near the surface. The small islands characterized by high velocity values match the highly compacted areas which represent lacunas repaired with cement based mortar

CONCLUSION

- > The implementation of geophysical techniques on Roman Mosaic especially the acoustic method has shown to be effective in the identification of deteriorated areas and allow to map the entirety of the floor revealing areas of urgent needs of restoration.
- > The electrical techniques, although destructive has proven to be equally able to identify but can be used on bench model for calibration and experimentation with noninvasive tools